Immobilization of Imidazolium Cation Based Ionic Liquids on Thin Polymer Films

L. M. Ramenskaya, E. P. Grishina, and O. V. Kraeva

Institute of Solution Chemistry, Russian Academy of Sciences, ul. Akademicheskaya 1, Ivanovo, 153045 Russia e-mail: lmr@isc-ras.ru

Received February 8, 2011

Abstract—Methods of gravimetry, optical microscopy, FTIR spectroscopy, and conductometry were applied to the study of the adsorption of the following ionic liquids: 1-butyl-3-methylimidazolium chloride, bistrifluoromethylsulfonylimide, and trifluoroacetate on thin-layer films of polymers of different nature including polypropylene, polyethylene terephthalate, polytetrafluoroethylene, poly(vinyl chloride), and hydrated cellulose. It was established that the hydrated cellulose film can serve as polymer matrices for the ion-conducting 1-butyl-3-methylimidazolium halide salts. The hydrated cellulose additive in the ionic liquids promotes their immobilization on the poly(vinyl chloride) film.

DOI: 10.1134/S107036321204024X

Recently time ionic liquids attracted a growing interest to the application in various branches of science and technology. Due to the thermal stability, non-combustibility, low volatility, high conductivity, wide temperature range of liquid state, and other specific properties, they are widely used as alternative solvents in organic synthesis, extraction, chromatography, catalytic and electrolytic processes, and in several other areas [1].

Ionic liquids consist of a bulky organic or inorganic cation (ammonium, phosphonium, imidazolium, pyridinium, etc.) and organic or inorganic anion (chloride, bromide, tetrafluoroborate, hexafluorophosphate, acetate, etc.). The cation and anion in a ionic liquid are bound by electrostatic and donor-acceptor (hydrogen bonding) interactions, thus forming extended bridged structure of hydrogen bonds. Proton donors in the ionic liquids, e.g., those based on the imidazole (Scheme 1), are the hydrocarbon groups of the heterocycle or alkyl radical, the proton acceptors are the atoms of the anion (Cl. O, etc.) [2-4]. The anion in the ionic liquid can interact through the hydrogen bonds not only with its own cation, but also with donor groups of the molecules of other substances. For instance, this is why 1-butyl-3methylimidazolium chloride dissolves well inorganic salts [5, 6] and natural polymers [7–9], and is miscible with low molecular weight synthetic polymers [10].

Since the ionic liquids are composed mainly of free carriers of a charge, the non-conductive polymers filled with ionic liquids gain ionic conductivity. On the other hand, a decrease in the dielectric properties of polymers used as insulators impairs their performance. Therefore, the modification of polymer films with ionic liquids to supply them with conductive properties is of interest by virtue of the commercial availability of their components and the simplicity of the method.

Currently, the ion-conducting polymer electrolytes can be obtained by the *in sity* polymerization of the starting monomers in the ionic liquid as a solvent [11–13], as well as by the traditional method of direct mixing of the polymer with the ionic liquid [14–16]. The maximum conductivity of the film-forming gel electrolyte, obtained on the basis of the ionic liquid from ethylmethylimidazolium bromide and 2-hydroxyethyl methacrylate monomer, was 2.3×10^{-2} Cm cm⁻¹ (300 K) [13].

In this study we explored a possibility of immobilization of low-temperature ionic liquids on polymer matrices. The latter were selected among the commercial films made of synthetic and natural polymers with low conductivity (insulators), containing various substituents and functional groups. As ionic liquids the most common low-temperature salts with the 1-butyl-3-methylimidazolium cation and the anions of different nature, [bmim][X], were chosen. Structural formulas of the objects of the study are shown below.

1-butyl-3-methylimidazolium trifluoroacetate (CF₃CO₂) chloride

$$F_3C$$
, \parallel \parallel CF_3

bis(trifluoromethylsulfanyl)imide (Tf₂N⁻)

Table 1 lists the relative change in the weight of synthetic polymer films $\alpha = (m_{\tau} - m)/m$ in ionic liquids. As seen, after prolonged treatment the weight of the film **II** of 355 µm thickness remains virtually unchanged, the value of α of the films **I** and **III** are of different sign and do not exceed 1–2%, the weight of the film **IV** decreases slightly. The negative swelling of polymer (a decrease in the initial weight) may occur as a result of leaching of soluble impurities [17].

Figure 1 shows the adsorption curves of ionic liquids by film II of 10 µm thickness (fluoroplastic sealing material tape, FSM). The maximum degree of adsorption is proportional to the molecular weight of the ionic liquid, and depending on the anion changes in a series of $[Tf_2N]^- > [CF_3CO_2]^- > [Cl]^-$, at the same time, polytetrafluoroethylene adsorbs $\sim 4.5 \times 10^{-5}$ M of ionic liquids per 1 g, regardless of the nature of the anion. The polymer does not hold the imbibed ionic liquid and it can be easily removed at the contact with filter paper. The weight gain of the polytetrafluoroethylene thin film is caused obviously by the capillary filling of the material open pores. The ionic liquid not connected with the film material is desorbed easily by contact with cellulose, which can interact with the ionic liquid [18].

Gravimetric measurements carried out with the hydrated cellulose–[bmim][X] system showed that the weight of the source film increases with the increase in processing time while the linear dimensions of the

Table 1. Relative mass change $(\alpha)^a$ of the synthetic polymer films in ionic liquids [bmim][X]

Polymer	Time, h	[Cl] ⁻	[CF ₃ CO ₂] ⁻	$[Tf_2N]^-$	
I	7	0.0025	0.0025 0.0026		
	24	-0.0051	-0.0077	-0.0026	
	52	-0.0127	-0.0077	-0.0157	
	97.5	0	0.02000	0.0184	
II (355)	24.5	0.0001	0.0001	0	
	47.5	0.0001	0	0	
	71.5	0.0001	0.0001	0.0002	
	95.5	0	0	0	
III	7	-0.0018	0.0035	0.0018	
	24	-0.0018	-0.0053	0.0071	
	52	-0.0018	-0.0140	-0.0107	
	97.5	0.0035	-0.0036	0.0053	
IV	24	-0.0007	-0.0070	-0.0060	
	48	-0.0021	-0.0898	-0.0094	
	71	-0.0024	-0.0113	-0.0024	

^a $\alpha = (m_{\tau} - m)/m$, where m and m_{τ} are weights of the film before and after treatment.

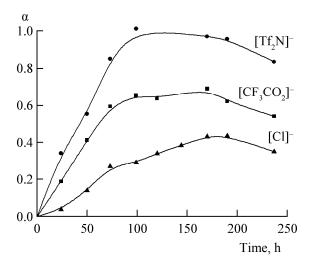
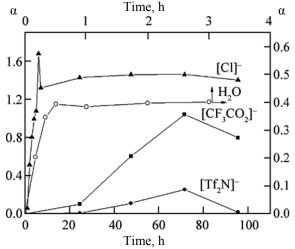



Fig. 1. Kinetic curves of adsorption of ionic liquids [bmim][X] by film II (10 μ m), 25°C.

samples do not change, that is, the hydrated cellulose film (cellophane) limitedly swells in imidazole ionic liquid [17]. Adsorption curves of hydrated cellulose films in the ionic liquids and H₂O (the cellulose based materials are rather hygroscopic, and the used ionic liquids contain equilibrium water) are shown in Fig. 2. In contrast to water, at the immersion of the film in the ionic liquid its weight increases slowly as a function of the immersion duration. As seen from Fig. 2, the degree of swelling in water does not exceed 40%, and taking into account the moisture content in the ionic liquid it is obvious that in the system of hydrated cellulose–[bmim][X] the cellulose films adsorbs mainly the ionic liquid.

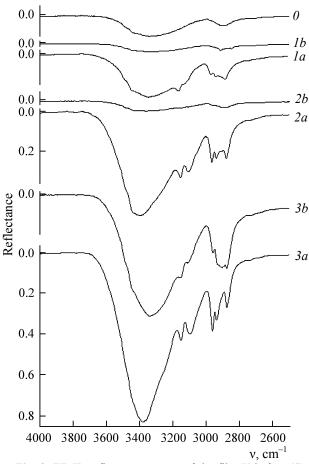
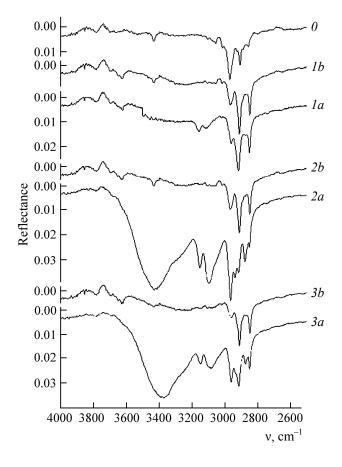

Figure 2 shows that after reaching maximum the value of α decreases, which is typical for the process of swelling of polymers, when it releases a part of the adsorbed liquid due to restructuring its own structure and relaxation processes occurring therewith [17]. As a result, the previously adsorbed ionic liquid [bmim]. [Tf₂N] leaves the polymer almost completely. Ionic liquids with anions [Cl] and [CF₃CO₂] in contrast to [bmim][Tf₂N], are held by the hydrated cellulose (weight of the film at a constant temperature and humidity remains almost unchanged). Thus, analysis of the curves in Fig. 2 shows that the value of the equilibrium swelling degree of the hydrated cellulose film depends on the nature of the ionic liquid anion varying in the series $[Cl]^- > [CF_3CO_2]^- >> [Tf_2N]^-$. The swelling as well as dissolution of cellulose are due to the formation of hydrogen bonds between the ionic liquid anion and the hydrogen of the hydroxy group of cellulose [19].

Fig. 2. Adsorption isotherms of ionic liquids [bmim][X] by film **V**, 25°C.


The ionic liquids adsorbed by films practically could not be detected with a microscope, but were well registered by means of infrared spectroscopy. Figure 3 shows the IR reflectance spectra of hydrated cellulose films before and after treatment with a ionic liquid, as well as the spectra of these films after contact with filter paper (within three days). All spectra in the range 2500-4000 cm⁻¹ have the same scale along the ordinate and are comparable with each other. In the IR spectra of the hydrated cellulose films after treatment with the ionic liquids (1a-3a) the bands appear in the frequency range from 2800 to 3200 cm⁻¹, which are absent in the spectrum of the initial film (spectrum 0). They are due to vibrations of the C-H bonds of the aromatic ring (3000-3200 cm⁻¹) and aliphatic substituents (2800–3000 cm⁻¹) of the imidazolium cation [2-4]. The presence of these bands in the spectra of the films after desorption (1b-3b) suggests that the ionic liquids, especially with the ion $[C1]^-(3b)$, are firmly held by the polymer matrix. The weight of the ionic liquid remaining in the film reaches 10% and 50% of the initially adsorbed [bmim][CF₃CO₂] and [bmim][Cl], respectively.

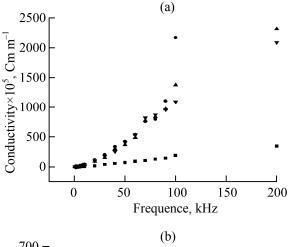
According to gravimetry, films I, III, and IV do not adsorb ionic liquids, nevertheless the IR spectra of these films contain the vibration frequencies characteristic of the imidazolium aromatic CH groups from the ionic liquid. Figure 4 by the example of film III shows changes in the spectra of the studied synthetic polymer films processed in the ionic liquids. As seen, the adsorbed ionic liquid is completely removed after immersion desorption. But if these films are impre-

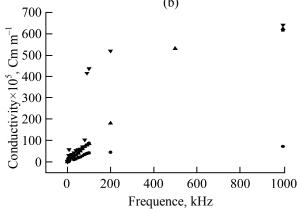
Fig. 3. FT–IR reflectance spectra of the film **V** before (θ) and after (I–3) reaching equilibrium adsorption of ionic liquid [bmim][X], X: Tf₂N (I), CF₃CO₂ (I) and Cl (I), (a) before and (b) after desorption.

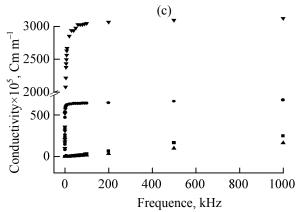

gnated with the ionic liquids containing an admixture of hydrated cellulose (the hydrated cellulose partly dissolves in the ionic liquid at swelling), apart from the frequencies characteristic for the ionic liquids, the IR spectra contain the characteristic vibration frequencies of OH groups of the hydrated cellulose (3390 cm⁻¹), which in the films of poly(vinyl chloride) do not disappear completely after desorption (Fig. 5). According to IR spectroscopy, they contain 30-45% of the initial amount of adsorbed chloride or trifluoroacetate ionic liquid. It is obvious that the hydrated cellulose promotes the retention of the ionic liquids with the anions [Cl] and [CF₃CO₂] in poly(vinyl chloride) films. It follows from the IR spectroscopic data that the ionic liquids in trace amounts could penetrate the films of synthetic polymers (the amorphous phase or defects of crystalline phase). Using as a sorbent the 1-butyl-3-methylimidazolium chloride or trifluoroacetate containing some hydrated

Fig. 4. FT-IR reflectance spectra of films **III** before (θ) and after (1-3) reaching equilibrium adsorption of ionic liquid [bmim][X], X: Tf₂N (1), CF₃CO₂ (2) and Cl (3), (a) before and (b) after desorption.

cellulose, we can obtain stable poly(vinyl chloride) film doped with the components of the sorbent.


Table 2 shows the results of electrochemical measurements, which indicate the change in the bulk specific conductivity of the film after processing with ionic liquids with respect to the same characteristic of the original film. We see that the adsorbed hydrophilic liquid [bmim][Cl] and [bmim][CF₃CO₂] increases the conductivity of the hydrated cellulose film by several orders of magnitude. After the treatment with the hydrophobic $[Tf_2N]^$ conductivity may decrease due to the leaching of the admixture from the film. The ionic liquids retained, according to IR spectra, in the synthetic polymer increase the conductivity of the poly(vinyl chloride) film, but insignificantly reduce the conductivity of the polyethylene terephthalate film. The dependences presented in Fig. 6 show that the conductivity of the




Fig. 5. FT-IR reflectance spectra of film **IV** before (0) and after (I-3) reaching adsorption equilibrium of ionic liquid [bmim][X] -V, X: Tf₂N (I), CF₃CO₂ (2) and Cl (3), (a) before and (b) after desorption.

films of synthetic polymers both before and after treatment with the ionic liquids increase with the growing frequency of alternating current (Figs. 6a and 6b), which is typical for polymers. The frequency dependence of the specific conductivity of hydrated cellulose film with adsorbed [bmim][Cl] and [bmim][CF₃CO₂] (Fig. 6c), in contrast to other examined systems of polymer film–ionic liquid, have a broad plateau (the area of assessment of conductive properties of the material) characteristic of an electrolyte [20]. The limiting (frequency independent) value of σ characterizes the ionic conductivity of composite polymer films, they are 0.65×10^{-5} and 3.0×10^{-2} Cm m⁻¹ for systems of hydrated cellulose–[bmim]⁺[CF₃CO₂]⁻ and hydrated cellulose–[bmim]⁺[CI]⁻, respectively.

Thus, this study established that polypropylene, polytetrafluoroethylene (fluoroplast), polyethylene terephthalate, and poly(vinyl chloride) do not adsorb ionic liquids with the cation 1-butyl-3-methylimidazolium in a significant amount, and insulator properties of the polymers remained unchanged. Polytetrafluoro-

Fig. 6. Dependence of specific conductivity of the films (a) **IV**, (b) **III**, and (c) **V** on the frequency of alternating current before (squares) and after treatment in [bmim][X]–V; CF_3CO_2 (circles), Tf_2N (vertex up triangles) Cl (vertex down triangles) U = 0.04 V (a, c), 0.5 V (b), $25^{\circ}C$.

ethylene as a tape cannot be used as an insulating material in a ionic liquid medium. Hydrated cellulose contributes to fixing the 1-butyl-3-methylimidazolium chloride and trifluoroacetate on the poly(vinyl chloride) film. The films of hydrated cellulose can serve as carriers of hydrophilic 1-butyl-3-methylimida-

Table 2. Relative changes in bulk specific conductivity of polymer films $(\sigma - \sigma)/\sigma$ after processing with [bmim][X], $f = 2 \text{ kHz}, 25^{\circ}\text{C}$

Anion	I	III	IV	V
[C1] ⁻	-0.44	-0.03	5.77	6810
$[CF_3CO_2]^-$	-0.04	-0.02	0.05	2730
$[Tf_2N]^-$	-0.10	-0.07	5.50	-0.05

zolium halide and acetate salts. The immobilization of 1-butyl-3-methylimidazolium chloride leads to an increase in electrical conductivity of the original film by several orders of magnitude and imparts it the properties of solid polymer electrolytes.

EXPERIMENTAL

The polypropylene, polytetrafluoroethylene, polyethylene terephthalate, poly(vinyl chloride) and hydrated cellulose polymer films from various manufacturers were conditioned at the atmospheric humidity 70-75% and temperature 25°C. The obtained samples were characterized by the density (d), thickness (δ), melting point (mp), and glass transition temperature (t_g) , bulk specific conductivity (σ) , and IR transmission spectra. The ionic liquids 1-butyl-3methylimidazolium trifluoroacetate [bmim][CF₃CO₂], bistrifluromethylsulfonyl imide [bmim][(CF₃SO₂)₂N] or [bmim][Tf₂N] from Merck, and chloride [bmim][Cl] from Across Organics contained at least 96-98% of the main substance and 0.09, 0.07, and 2.58 wt % of water, respectively. These salts were kept in air at a humidity of 70–75% and a temperature of 25°C, the equilibrium

moisture content was 10, 0.8, and 23 wt %, respectively. During the experiment, all the salts were in the melt or supercooled melt state. Some physicochemical properties of polymer films and ionic liquids are given in Table 3.

Filling the polymer films with ionic liquids was carried out as follows. In a glass sample bottle with 5 ml of an ionic liquid (sorbate) was immersed a polymer film (sorbent) weighing (m) from 0.019 to 0.3 g (depending on the polymer density). The liquor ratio was ~ 500 , the processing temperature $(25\pm 2)^{\circ}$ C. the humidity $(73\pm2)\%$. Before immersing, the film was degreased by rubbing with a cotton swab soaked in ethyl alcohol. At regular time intervals the film was taken from the bath, the excess ionic liquids was removed from the surface mechanically with a glass spatula and a cotton swab with ethanol, dried, weighed (m_0) on an analytical balance Sartorius ME215S, and then again immersed in the ionic liquid. The adsorption process was regarded as completed when the film weight at the next weighing remained unchanged within the experimental error, or permanently decreased. The accuracy ($\pm 2\%$) estimated as the standard deviation of four independent short-term immersion of polypropylene and polyethylene terephthalate samples in the ionic liquid followed by the common treatment. The proposed method of adsorption of thin polymer films in a small volume of a fluid was pre-tested using traditional solvents with the polyethylene terephthalate-CHCl₃ and polypropylene-CCl₄ systems, as well as with the system under the study of hydrated cellulose-[bmim][C1]. As a result,

Table 3. Physicochemical properties of polymer films and ionic liquids [bmim][X]

Compound	M [22]	δ, μm	d^{25} , g cm ⁻³	mp, °C	t _g ,°C	σ ²⁵ , Sm m ^{-1 a}
I	(7-30)×10 ⁴	20	0.98	164	- 9	2.2×10 ⁻⁵
II	(5-1000)×10 ⁴	355	2.84	>320	44, 140	1.4×10 ⁻⁶
		10	1.07	349	-58	8.9×10 ⁻⁵
III	$(2-5)\times10^4$	22	1.44	257	44, 152	3.4×10 ⁻⁵
IV	$(1-15)\times10^4$	220	2.27	>150	-59, 57	4.4×10^{-6}
\mathbf{V}	$30-100 \text{ g m}^{-3}$	30	1.43	75	_	4.5×10 ⁻⁵
[Cl] ⁻	174.7	_	1.08	_	-42	2.6
$[CF_3CO_2]^-$	252.4	_	1.209 ^b	85	-50	3.9 ^b
$[\mathrm{Tf_2N}]^-$	419.4	_	1.429 ^b	0.5	-88, -60	3.2 ^b

^a U = 0.5 V (I-III), 0.04 V (IV, V), f = 2 kHz. ^b 20°C [21].

we obtained the classical curves of the polymer adsorption (swelling) [17], for three independent samples with the hydrated cellulose. These curves satisfactorily coincided with each other, which indicate the adequacy of the methodology used. The ionic liquid desorption from the polymer film was performed by prolonged contact with the filter paper.

The FT-IR reflectance spectra of the films **I**, **III-V** were recorded on a VERTEX 80v spectrophotometer in the frequency range from 8000 to 350 cm⁻¹. Microscopy of the films was performed using an optical microscope Mikromed coupled with a web camera DCM-130, the zoom 40 and 100. FT-IR transmission spectra of ionic liquids were recorded on a spectrophotometer Avatar 360 FT-IR ESP from thin layers between two KRS-5 plates, the frequency range 4000–200 cm⁻¹.

The melting temperature and the glass transition temperature of the studied objects were determined on a differential scanning calorimeter NETZCH DSC 204 F1, the capsule material was Al, the sample weight \sim 20 mg, heating in an atmosphere of N₂ from -90 to 100° C, heating rate 10° C min⁻¹.

The conductivity measurements were performed at 25°C using an immittance meter E7-20 in a cell with two smooth Pt electrodes with the area $S=1.32~{\rm cm}^2$. Film resistance (R) was measured at the alternating current voltage (u) on the cell of 0.04 or 0.5 V in the frequency range (f) from 25 Hz to 1 MHz. The values of bulk specific resistance ($r=R\times S/d$, Ω m) and the specific bulk specific conductivity ($\sigma=1/r$, Cm m⁻¹) were calculated. The values of σ of the ionic liquids were determined at 25°C as described in [23].

As far as the ionic liquid after treatment of a film was carefully removed from the film surface, all changes in physical and chemical properties of the polymer films were considered to be associated with the adsorbed ionic liquid.

ACKNOWLEDGMENTS

This work was supported in part by Fundamental Research Program no. 8 of the Division of the Material Sciences of the Russian Academy of Sciences "New approaches to improving the corrosion and radiation resistance of materials, radioecological safety."

REFERENCES

- 1. Wassersheid, P. and Welton, T., *Ionic Liquids in Synthesis*, Weinheim: Wiley-VCH Verlag, 2003.
- 2. Dieter, K.M., Dymek, C.J., and Heimer, N.E., *J. Am. Chem. Soc.*, 1988, vol. 110, no. 9, p. 2722.
- Kölle, P. and Dronskowski, R., *Inorg. Chem.*, 2004, vol. 43, no. 9, p. 2803.
- 4. Dupont, J., *J. Braz. Chem. Soc.*, 2004, vol. 15, no. 3, p. 341.
- 5. Morimitsu, M. and Matsunaga, M., USA Patent no. 6 936 155 B1, 2005.
- 6. Tai, C.-C., Su, F.-Y., and Sun, I-W., *Electrochim. Acta*, 2005, vol. 50, no. 28, p. 5504.
- 7. Swatloski, R.P., Spear, S.K., and Holbrey, J.D., *J. Am. Chem. Soc.*, 2002, vol. 124, no. 18, p. 4974.
- 8. Philips, D.M., Drummy, L.F., Conrady, D.G., et al., *J. Am. Chem. Soc.*, 2004, vol. 126, no. 44, p. 14350.
- 9. Kilpelainen, I.K., Xie, H., King, A., et al., *J. Agric. Food. Chem.*, 2007, vol. 55, no. 22, p. 9142.
- Ramenskaya, L.M. and Grishina, E.P., Zh. Fiz. Khim., 2009, vol. 83, no. 6, p. 1026.
- 11. Noda, A. and Watanabe, M., *Electrochim. Acta*, 2000, vol. 45, nos. 8–9, p. 1265.
- Ohno, H., *Electrochim. Acta.*, 2001, vol. 46, nos. 8–9, p. 1407.
- 13. Tsuda, T., Nohira, T., Nakamoto, Y., Matsumoto, K., Nagiwara, R. and Ito, K., *Solid State Ionics*, 2002, vol. 149, nos. 3–4, p. 295.
- 14. Watanabe, M., Yamada, S.-I., and Ogata, N., *Electrochim. Acta*, 1995, vol. 40, no. 13, p. 2285.
- 15. Watanabe, M. and Mizumira, T., *Solid State Ionics*, 1996, vols. 86–88, pt. 1, p. 353
- 16. Fuller, J., Brea, A.M., and Carlin, R.T., *J. Electranal. Chem.*, 1998, vol. 459, no. 1, p. 29.
- 17. Tager, A.A., *Fizikokhimiya polimerov* (Physical Chemistry of Polymers), Moscow: Khimiya, 2007.
- 18. Sashina, E.S. and Novoselov, N.P., *Zh. Obshch. Khim.*, 2009, vol. 79, no. 6, p. 885.
- 19. Novoselov, N.P., Sashina, E.S., Kuz'mina, O.G., and Troshenkova, S.V., *Zh. Obshch. Khim.*, 2007, vol. 77, no. 6, p. 1317.
- 20. Blythe, A.R. and Bloor, D., *Electrical Properties of Polymers*, Moscow: FIZMALIT, 2008.
- 21. Bonhôte, P., Dias, A.-P., Papageorgiou, N., Kalyanasundaram, K., and Grätzel, M., *Inorg. Chem.* 1996, vol. 35, no. 5, p. 1168.
- 22. *Khimicheskaya entsiklopediya* (Chemical Encyclopedia), Knunyants, I.L. and Bol'shaya, M., Eds., Rossiiskaya Entsiklopediya, 1992.
- 23. Ramenskaya, L.M., Grishina, E.P., Pimenova, A.M., and Gruzdev, M.S., *Zh. Fiz. Khim.*, 2008, vol. 82, no. 7, p. 1246.